TECHNOLOGY 科技前沿

21世纪聚烯烃纤维(丙纶)的现状与发展

文 / 李瑞

聚烯烃纤维生产现状和发展

聚烯烃纤维在合纤中属后起之秀, 其发展 速度始终居各种合纤之首 自1953年意大利纳 塔教授发明丙纶, 1959年工业化, 1963年获诺 贝尔奖, 丙纶工业经历了四十五年发展历程。 丙纶自1995年超过锦纶、腈纶而居第二位, 仅次于涤纶。2002年涤纶占合纤的62 0%, 丙纶占17 5% (含膜裂纤维), 锦纶占11 5%, 腈纶占8 1%

产量及分布

按Fiber Organon的统计 近年世界聚烯烃 纤维的发展情况如表1,2002年丙纶已发展到399 4万吨 (不包括膜裂纤维在内),其中,长丝约占70%,短纤维约占30%,年增长率为6 2%。2002年为299万吨 (不包括纺粘 / 熔喷非织造布、单丝、膜裂纤维)。2003年达到420万吨(见表1)。

聚烯烃纤维包括乙纶和丙纶,其中丙纶占95%。长丝包括单丝和纺粘非织造布。

由表1可见聚烯烃纤维长丝比例由1996年的40 4%,提高到2002年的45 5% 短纤维比

例由1996的22 2%保持不变22 0%. 而膜裂纤维由1996年的35 2%下降至32 5%。(各国家和地区发展情况如表2)

表2可见,九十年代世界丙纶产量以6%以上的增长率高速增长,大大高于化纤平均增长水平。 而亚洲、特别是中国增长率高居全球之首。

2002年世界丙纶保持了2%的增长率.产量为591 3万吨。其增长率远低于涤纶的8%.腈纶的6.4%。锦纶的4 4%。

其中, 丙纶短纤维保持了7%的高增长, 特别是西欧和我国台湾省增长率高达20%和15% 长丝增长了1%, 其中 中国, 韩国为4%, 亚洲其他为5%, 西欧3%, 我国台湾省和拉美为1%

从1999~2002年西欧丙纶从170万吨增至180万吨,美国保持135万吨水平 而亚洲由163万吨增至185万吨 已超过西欧 中国丙纶在亚洲异军突起,经历25年的发展,已成为仅次于美国的第二生产大国,丙纶纤维(扣除膜裂纤维)为56 「万吨 中国丙纶占世界丙纶的16%,低于美国的22 5%。

表1 世界聚烯烃纤维的生产

单位: 千吨 增长率%

年份	1996年	1997年	1998年	1999年	2000年	2001年	2002年	99/98%	02/01%
长丝	1850	2033	2168	2292	2406	26 77	2694	+5.7	+0,6
短纤维	1018	1103	1195	1261	1189	1212	1300	+5.5	+7.3
膜裂纤维	1713	1822	1814	1966	2142	1909	1918	+8.4	+0.5
总计	4581	4958	5177	551 9	5737	57 98	5912	+6.6	+2.0

表2 世界聚烯烃纤维产量按地区分布情况

单位: 万吨

地区		美国	西欧	亚洲	中国	拉美	合计
1996年	产量	108 6 (87.7)	116 (57,6)	153.9 (83.5)	87.6 (51.6)	23.6 (10.2)	452.1 (286.9)
	96/92年增长率 占世界总量比例%	4.9 24.2	3.7 25.6	9.7 34.0	10.6 19.3	9.1 5.2	6,5 100
1999年	产量	134 0 {100,9}	170.0 (129.5)	163.0 (89.7)	91.6 (54.4)	32 8 {14.5}	55.1 (355.3)
	占世界总量比例%	24.2	30.8	29,5	16,5	5,1	100
2002年	产量	135.3 (101.3)	134.6 (120.2)	185,5 (95,8)	94.5 (56.1)	35.0 (17.3)	591.3 (399.4)
	占世界总量比例%	22.5	22.7	31.0	16,0	5,9	100

() 不包括膜裂纤维。亚洲含中国。

1-12 1 25 1

聚烯烃纤维在合纤中的地位

表3 2002年世界(中国、美国、西欧和日本)化纤主要品种产量

单位: 千吨, 所占比例 (%)

国家和地区	中国		美国		西欧		日本		世界		
	产量	比上年增长	产量	比上年增长	产量	比上年增长	产量	比上年增长	产量	比上年增长	占合纤比例
化学纤维	9815,5	+20,1	4162		3647,8		1416	-9.5	34610	+6.0	
粘胶纤维	680	+12,8	47.0	-26	393.9		162.2	-2.1	2118	-0.6	
S		(6.8)			316.0	+4.3	38.8	-45,0			
F					77.0	-20.6					
醋酸纤维	_	-	340	-14.8			109	-0.7	600	+1.0	
合成纤维	9135,5	+20.7			3253,9		1253		31892	+6.2	
涤纶	7721,6	+22, 8	1472		842.3	+2.0	563.8		20956	+8.1	(100)
F	4771.6	(78.0)	542	+2.1	391,3	-5.7	323,0	-8.4	12115	+8.4	(65.7)
s	2950		930	+0.5	451.0	+6.6	240.7	-8 ,7	8841	+6.8	
锦纶	474.9	+12,1	1106		499,3		132,8		3905	+4.4	
F		(4.79)	797	+7.1	411,1	-3.5	125,9	-22.5	_		(12,2)
s			309	+12.5	88,2	-11.9	6.4	-21.0	_		
腈纶	594,0	+11,3	150		566.3	+2.3	358	-1,9	2742	+6.4	
小计		(5,9)									(8.6)
丙纶	299	+6.5	1353	+1.0	1346	+7.0	124.4	-14.0	3994	+2.0	
	(561,0)	(5.7)									
F			1013	-2.0	876	+3.0	75.3	-17.0	2694	+1.0	(12,5)
s			340	+4.0	570	+15	49,1	-11.9	1300	+7.0	İ
维纶	20.0						32.5	-2.1	_		
**其他									349	+4.2	
氨纶	26.0						42.5	-2.3	240		(1.9)

资料来源: Fiber Organon 2003.6月号中国化纤工业协会日本化纤协会(包括氨纶)

*不包括扁丝、氨纶和其他。()中国 丙纶为实际估算值。美、西欧、日包括膜 裂纤维。

**2002年其他化纤为34.9万吨、增 长率为4.2%。包括氨纶 24万吨、氟纶 4.0万吨、新型聚脂(PBT等)1 3万吨、高吸 水纤维1 0万吨、高性能纤维 5.5万吨、 其中:芳纶3.5万吨、碳纤维2.0万吨。

据美国 Fiber Orsanon 的统计, 2002 年世界合纤产量为 2937.0万吨(不包括 聚烯烃纤维在内。)中国合纤产量为915 2 万吨,占世界化纤总产量的32 5%。而 1995年中国化纤占世界化纤比例仅为 15 3%, 2002年 涤纶占合纤的37%, 腈 纶占22%, 锦纶占14%, 丙纶占16.0%。

2002年世界化纤产量包括聚烯烃纤维 在内为3652 8万吨,其中合纤为3381万吨。 聚烯烃纤维(丙纶)产量为591万吨,占 世界化纤总产量的比例为16 7%。中国化 纤产量为991万吨,(官方公布统计中国丙 纶产量仅为29万吨,未能与国际统计口径 接轨。)若按实际产量(估算)产量超过 90万吨,Fiber Organon公布我国丙纶为 94 5万吨,按此计算,中国丙纶占中国化 纤的9 1%。

西欧丙纶发展较快为134.6万吨,占化纤总量的353万吨的38.12%,超过了涤纶和其他。美国化纤产量为416.1万吨,其中丙纶为135.3万吨。占化纤总量的32.2%,已接近涤纶的35.4%,锦纶占26.3%,腈纶占3.5%。日本化纤产量为141.5万吨,其中丙纶为12.4万吨,占化

纤总量的8%。年增长率为3 9%。涤纶占40%,锦纶占9.4%,粘胶占11.4%%。

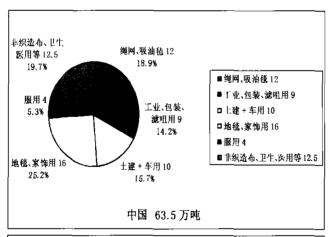
从表3可以看出 近年中国和日本的 丙纶发展,所占化纤总量比例仅为8~9%, 大大落后于欧美发达国家38 1%和 32 2%的水平。预计,2010年聚烯烃纤 维将以3~4%的增速发展。

中国的丙纶产量及品种

我国丙纶2002年产量为56 0万吨(不包括膜裂纤维),占化纤产量5 8%。长短丝比例60.40。纺粘/熔喷非织造布为27 7万吨,2005年~2010年为36~38万吨。预测2005~2010年丙纶将发展到77~89 5万吨,长短丝比例分别为67 33和70 30,其中增长最快的为纺粘/熔喷非织造布2003年非织造布的产量已达83 6万吨。预计2010年将达到160万吨。

TECHNOLOGY 科技前沿

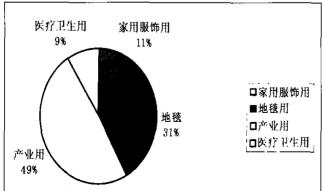
聚丙烯纤维的应用现状

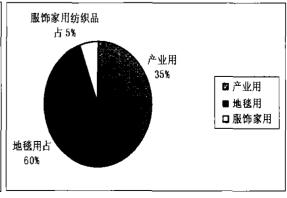

世界黎丙烯纤维的应用

自1993年~2003年丙纶产量(262 0万吨)十年中翻了一番,它主要应用在六大市场。据分析,绳、网吸油材料等 工业、农业生产用过滤布(化工、食品)袋,滤咀等,土工、建材、车用(包括非织造布)这三大市场约各占15%。地毯装饰用、贴墙布等占42%,是丙纶最大的市场,非织造布(抹布,防护服、医疗卫生)等占10%,而服用如内衣、运动衣、防寒服等约占2%。世界各主要丙纶生产国市场各有侧重,美国以地毯为主,占55.0% 产业用占22.1%,非织造布占丙纶26 0%,为36万吨,其中纺粘/熔喷非织造布为23.9万吨,医卫用占31%,主要是丙纶。服用和装饰织物占4 5%。西欧以非制造和地毯为主 分别占31%和27 5%,产业用占33 3%,服用占8 3%。可见,产业、地毯和非织造布成为丙纶消费的主要大市场,服用成为各国正在积极开拓的潜在市场。

2000年美国产业用丙纶占生产总量的35%,地毯用占60%,服饰家用纺织品占5%。 西欧家用服饰用展丙纶生产总量的11%,地毯占31%产业用占49%,医疗卫生用占9%。

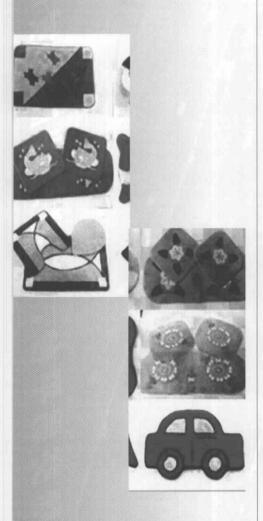
2002年西欧丙纶纤维消耗量总量为180 7万吨,增长率为2 0% 其中短纤维为52 1万吨,长丝为31 0万吨,合计占24 6%,增长最快。纺粘和熔喷非织造布为27 4万吨,增长亦较快。扁丝24 4万吨,裂膜纤维14 8万吨增长10%。绳带24.4万吨,单丝5 6万吨。


我国的丙纶应用情况



我国丙纶以产业用为主,约占53 9% 地毯占25 2%,非织造布用占到19 1%,服用占6 3%。地毯用低于世界平均40%的水平。非织造布应用近年发展很快 已超过世界平均10%的水平,2003年非织造布产量已达到63 3万吨,随着人民健康水平提高和人口老龄化,非织造布特别是纺粘熔喷非织造布将会大发展,预计2010年将发展到160万吨。其中,丙纶将占原料的80%以上。

- 1.2002年中国聚烯烃纤维市场消费结构分析
- 2.2000年西欧聚丙烯市场分布
- 2 3 3.2000年美国聚丙烯纤维市场分布


1

TECHNOLOGY 科技前沿

聚丙烯及抽丝级聚丙烯现状与发展

产量和需求

2002年,全球聚丙烯能力约3946.6 万吨/年,产量为3440。9万吨/年。其中亚太地区能力约为1502万吨/年,西欧地区能力约为966.5万吨/年,北美地区能力约为887.6万吨/年,以上三个地区的聚丙烯能力占世界总能力的85.1%。

近5年来,全球PP生产能力增长了50%,年均增长率达到10%,全球PP生产能力1997年为27.0Mt/a,2000年为34Mt/a,2002年已达到39.46Mt/a。中东和非洲增长最快,占增量的60%,中东地区由于沙特阿拉伯新建装置投产,由2000年的0.75Mt/a增长到2001年的1.95Mt/a,2000年亚太地区PP需求增长率超过10%,单2001年仅增长5%,并吸收了来自沙特阿拉伯和伊朗的PP出口能力。预计2005年全球PP产量将从2002年的34.0Mt/a增加到57.3Mt/A,2015年产量将达到71.7Mt/a。

近年来,中国聚丙烯的发展也进入了发展的快车道,1997年我国聚丙烯生产能力为213万吨/年,产量为188.0万吨,到2002年生产能力达到了392万吨/年,产量到达380.01万吨。年均增长率分别达到了13.0%和15.1%。聚丙烯进口量为244.2万吨,国内表现消费量为623.0万吨,国内产品的市场占有率为61.0%,于001年相比,产量、进口量和表现消费

量分别增加13.8%、17.1%和15.0%, 是合成树脂中需求增长最快的品种之一。 聚丙烯已广泛地应用于注塑成型、薄膜、 单丝、纤维、中空成型、挤出成型等领域,产品正在向多样化、功能化及高附加值化转变。中国正与壳牌、埃克森美 孚/沙特阿美公司和BP公司合资大型石化/塑料联合企业,中国PP工业的现代化和扩能改造将使中国PP的供需矛盾在今后10年内得到缓解。

纤维级聚丙烯

2002年我国聚丙烯消费总量625万吨,消费结构中各主要品种比例如下。纤维级56万吨,占9%,编织品31.8万吨,占51%已超过半数,注塑级占17.3%,BOPP占3.2%,管板占4%等。世界纤维级聚丙烯所占比例1990年27.8%,1995年26.1%,2000年约占25%,其增长率有1990~1995的7.7%下降至1995~2000年的4.6%。预计在今后十五年内仍将以5%的速度增长,将给丙纶发展提供充足的原料。

从表4中可以看出,我国纤维级聚丙烯比例远低于世界平均水平。如:2000年我国为15.35%,世界为25%,欧美国家占1/3.2002年中国抽丝级57万吨,占总量的14.4%,其中长短丝(BCF)29万吨。非织造不用28万吨,另外滤咀丝束

萝	き別	1998年	1999年	2000年	2002年
誓	千维级, 万吨	15.29	31.02	35,04	56,57
4	F维级比例. %	10.42	15,86	15.35	14.4

用4 5万吨,包括膜裂纤维在内为88.8万吨。

茂金属催化剂聚丙烯

聚丙烯一直采用齐格鲁/纳塔催化剂生产等规PP。如果采用茂金属催化剂,主要产品为MPP,具有摘得Mw/Mn(远远小于2)较低熔点(148度),而ipp的Mw/Mn为3~6熔点为165度,等规度也比MPP低。当他们的分子量相等时,MPP有较低的熔体粘度和拉伸硬力,其可纺性和强力优于iPP。如采用空气拉伸工艺可以生产细旦,超细旦纤维。还能生产出适合熔喷非织造布的MF12000的PP。且具有较高的抗张强度和抗冲击性能,极好的染色性能和阻燃性能。

茂金属聚丙烯纤维及其在纺粘法非织 造布用的应用

茂金属络合物催化剂具有单一催化 中心(单中心催化剂),定向配位能力 强. 与齐格勒催化的聚丙烯Zi-PP相比. 等规的聚丙烯mi-PP分子量分布窄, 可纺 性好 低温下纺丝性能好 在较低纺速下 (400m/min) 取向度高, 有利于纺细旦丝, 如纤度为1dtex, 纺丝速度也可大大提高。 强度也有提高。用他做的纺粘非织造布均 匀性好,阻隔性好。表5为茂金属聚丙烯 Metocenex50248和纳塔催化剂聚丙烯 Ziegeer-Natta-PP纺粘法非织造布在卫生 保健领域应用的比较、表6为在纺织应用 中茂金属聚丙烯和纳塔催化剂聚丙烯性能 比较。有表所示数据可明显看出茂金属聚 丙烯性能优于纳塔催化剂聚丙烯. 因此目 前国际上都致力于开发茂金属聚丙烯纤 维。

聚丙烯树脂发展趋势

大型化、集约化、"巨无霸" 通过 兼并、收购、重组,一是聚丙烯的生产企 业数量明显减少。1993年至2001年西欧有 17家减至10家,北美由16家减至12家;日 本由14家减至3家。二是重组初见成效。 如壳牌、BASF组建巴塞尔公司 生产规 模达5 5Mt/a,2002年新建项目30万t/a,

BP公司达3 1Mt/a, Exxon公司达 1 9Mt/a, 阿托菲公司1 75Mt/a。

总量继续增长.2002年全球聚丙烯产量为24 4Mt/a 需求34.1Mt/a。预计2005年能力达到48Mt/a,需求为41Mt/a,亚太地区增长率为5%,2010年全球增长率将由6.9%降至4.3%。

新型催化剂等聚合技术进步快 国外茂金属单活性中心(SSC)催化剂的工业化应用改进产品性能显著。如Exxpol/Unipol、Metacene、JPC/三菱化学、道化学、北欧化工、BP公司等所生产聚丙烯树脂的品种亦从等规、共聚、无规乃至弹性聚合物。目前,mipp等规聚丙烯的市场仅为0 2Mt/a 相当于miPP等规

聚乙烯市场的20%,最近二茂金属络合物催化剂正推向市场,特别适合生产熔喷非织造布。预计,miPP增长率保持在20~25%之间,2006年~2010年总规模达到4 24Mt/a。

提高规模化和国产化率 我国聚丙烯大型装置以引进为主,中、小型装置实现了国产化(8家),1995年为107 3万吨,2001年提高到322 5万吨,由第一代环管聚合工艺(包括国产催化剂)发展到第二代环管聚合工艺。如 上海石化.规模由70kt/a提高到200kt/a。2001年我国聚丙烯322 5万吨(70家),其中〉100kt/a共8家。国内平均单线规模7~20万吨/年,国外单线规模16~25万吨/年,规模化最大单套能力增至38万吨/年。国产化市场占有率由1995年的49 2%提高到2000年的66%。北京化工研究院N型高效PP催化剂以在多国获专利,活性大于50kgPP/g。

增加功能和高附加值: 改性聚丙烯树脂产量为350万吨/年, 年增长率为77%。所占树脂总量比例逐年增加,约占10%, 其中,亚太地区占15%, 西欧占966%, 北美占887% 三个地区合计PP生产能力占世界的85.1%。

表5 茂金属聚丙烯和纳塔催化剂聚丙烯纺粘法非织造布 在卫生保健領域应用的比较

聚合物种类	织物重量g/m2	纤度dtex	强度N/5cm		伸长光	
			MD	CD	MD	CD
Z/N-PP	17	1. 7	50	32	95	93
Metocene	14	1. 1	58	34	5 5	56
	17	1, 1	77	36	83	81
	20	1	87	37	61	63

表6 在纺织应用中茂金属聚丙烯和纳塔催化剂聚丙烯性能比较

	Metocenex50248		Ziegleer-Natta-PP		
熔融指数MFR g·min-1	18		25		
加工方法	POY	DTY	POY	DTY	
强度cN/dtex	3.9	4.8	2.4	4.0	
伸长%	115	55	230	50	
POY纺丝速度m/min	3000~4000				
DTY加工速度m/min	500				