رک)

TS/02.526

丙纶短纤的特性、用途和纺纱工艺特点

周桂荣

南京东大纺织集团公司 210044

A

【摘 要】 回顾了丙纶的发展历史,介绍了丙纶短纤的优缺点、适用范围和纺部各工序的工艺特点。

【关键词】 两轮 短纤 纺纱工艺 , 持承 、 分分次 /

1 前 言

丙纶是合成纤维"五大纶"(涤纶、腈纶、锦纶、维纶和丙纶)之一,它采用石油精炼中产生的副产品丙烯,经阴离子催化剂进行聚合而成等规聚丙烯后制成。

1957年丙纶首先在意大利投入工业化生产,当时产量仅 2000吨/年。以后,在工业中应用的发展速度很快,到 1974年全世界产量68.4万吨,占化学纤维总量的 8.6%,跃居为世界第四大合成纤维(涤纶、锦纶、腈纶和丙纶)。1979年世界总产量为 108.9万吨,1981年已超过 110万吨。产量以美国为第一。目前,美国年产量在 45 万吨以上而超过腈纶,在美国跃居为第三大合成纤维。其次为意大利、英国、德国、法国。1995年全世界丙纶约占合纤总量的 10%左右,我国仅占 5%左右。随着对丙纶的优良性能的进一步认识,发展速度将会加快。

2 丙纶纤维的特性

2.1 质地轻

比重仅 0.91 g/cm³,能浮在水面上,是常用纤维中最轻的纤维。现将几种常用纤维的比重列于表 1。

由表 1 可知,同体积的两纶只有棉花重量的 3/5,涤纶重量的 2/3。因此,相同支数的两纶混纺、纯纺纱线的直径大于纯棉纱线的直径。当纱线直径相同时,两纶混纺、纯纺纱线相当于纯棉纱线支数的换算公式如下;

丙纶混纺、纬纺纱(线)支数=转换系数× 相当的纯棉纱(线)支数。

转换系数如表 2。

表 1

名称	比重	丙纶与其他纤维之比(%)
丙纶	0.91	100
锦纶	1.14	79, 8
腈纶	1.17	77. 8
涤纶	1.38	65, 9
粘胶	1.52	59. 9
蚕丝	1.30	70. 0
羊毛	1. 32	68. 9
棉	1.54	59. 1
≝麻	1,55	58.7

衰 :

丙纶比例(%)	丙/棉、丙/粘混纺纱转换系数			
0	1.00			
10	1. 03			
20	1. 07			
30	1. 11			
40	1- 16			
50	1. 21			
60	1, 27			
70	1. 33			
80	1, 39			
90	1, 46			
100	1, 54			

例如相当于 20^{s} 纯棉纱同样粗细的纯丙纶 纱支数为:转换系数 $\times 20^{s}=1.54\times 20^{s}=30.8^{s}$

由上可知,20° 纯棉纱可用 30、8° 纯丙纶纱 代替,在相同直径下同样一磅纱,丙纶丝可比棉

纱长 1.54 倍。以同样的经纬密度,如用丙纶纱织造,用纱量可大为减少,大大降低织物的原料成本。

另外,目前衣着的潮流亦在向轻的方向发展,由于丙纶纤维较轻,制成的织物亦轻,使人体活动轻松,特别对运动员更有重要的意义。

2.2 价格廣

两纶以常规聚丙烯为原料,而常规聚丙烯的制造工艺流程短、同时近几年来技术不断进步,能制成各种适合纺丝的、价廉的聚丙烯切片,所以丙纶纤维在目前所有纤维中最为廉价,我国人均收入不高,而且还有相当多的贫困地区,更有特殊的发展意义,"九五"期间应是重点发展的化纤品种之一,用以部分代替价格昂贵的棉花、腈纶、涤纶、锦纶、羊毛和蚕丝等。

以下以普通 140 号棉中平布(20°×20°60 ×60 36 in)为例,具体计算以棉为原料和以丙 纶为原料时每米布所需原纱的价格差异。该规 格棉布的无桨干重为 135.8 g/m²,则其每米无 桨干重为 135.8 g/m²×0.914 m×1 m=124.1 g。20 支棉纱目前市场价以 2.4 万元/吨计,则 每米棉布的纱价为 24 元/kg×0.1241 kg= 2.98 元。现以 30 支丙纶纱代替 20 支棉纱(因 两者直径相近)。30 支丙纶纱价按 1.8 万元/吨 计(丙纶纤维按 1.05 万元/吨计),则每米布所 用丙纶原纱价为 18 元/kg×0.1241 kg×0.91/ 1、54=1.32元(0.91 为丙纶纤维比重,1.54 为 棉纤维比重),以上计算中从纱到布的损耗均略 去不计,则丙纶原纱价/棉纱原纱价=1.32/ 2.98=44.3%。以上计算表明,制织同样厚度、 宽度和长度织物条件下,用丙纶纱代替棉纱时, 原纱成本可降低 55.7%。

2.3 干而爽

两纶的吸湿性很低,在常温、常湿环境下回潮率只有 0.1%。但它有很强的移湿作用,即芯吸效应。它独具传导水汽的性能,使湿汽能迅速有效地转移到织物的另一侧。它本身不吸水,穿着时可保持皮肤干燥,大大提高了舒适性和卫生性,常可制成双层织物,如棉盖丙、涤盖丙、丝盖丙等。丙纶在里层与人体接触,如出汗后通过

丙纶的移湿作用,把水分导向外层,向外排湿而 内层丙纶保持干爽,这是其他合纤所不具备的 特征。所以能一反以往都把合纤放在外层,而把 天然纤维放在内层的做法,如过去涤盖棉等。现 在因丙纶的这一性能比棉纤维好,而将丙纶放 在里层。

2.4 保暖好

各种常用纤维的导热系数列于表 3。

表 3

纤维名称	丙纶	蚕丝	涤纶	羊毛	腈纶	鴾纶	粘胶	楠
导热系数	6	7	7. 3	8	8	10	11	17. 5

由表 3 可知,丙纶是干、湿热传导系数最低的一种纤维,所以保暖性最好。

2.5 无 港

丙纶的原料是聚丙烯,为一种碳氢化合物,本身无毒,多数香烟过滤嘴也采用丙纶。丙纶不会引起皮肤过敏等副作用,所以更适宜做贴身内衣。

2.6 强度高

一般丙纶短纤维的强度在 4.7g/旦左右,接近涤纶短纤 4.8 g/旦,比腈纶(3.6 g/旦)、棉(3 g/旦)高,所以其成纱强力接近纯涤纶纱,故丙纶纱可以代替纯涤纶线作缝纫线。

2.7 抗起球性好。

丙纶短纤因耐磨性好,在各类合纤中最不 易起球,所以可广泛应用于汽车工业、制作沙发 布和装饰布。

2.8 耐磨性好

由于丙纶的回弹性、初始模量和动、静摩擦 系数均比涤纶低,因而耐磨性很好,所以常用来 做鞋的内衬和沙发布。

2.9 弹性好

两纶短纤维的弹性伸长为 15%~50%,比 涤纶、粘胶大得多,但比锦纶差。

2、10 抗静电性

在合纤中两纶的抗静电性最好,各种纤维 在一定条件下,均能产生静电,但人们穿着鞋在 两纶地毯上行走时,鞋底产生的电压比羊毛、锦 纶、腈纶低得多。衣服在穿着时产生的静电、使 人感到不适,而两纶内衣穿着时则感到舒适。

2.11 化学稳定性好

由于丙纶大分子结构为碳氢化合物,具有 优良的耐腐蚀性。丙纶对高浓度的酸和碱及常 用化学药剂有很好的稳定性,所以可用作多种 产业的防护织物和工作服等。

2.12 抗虫蛀和霉菌

在正常用途中·聚丙烯回潮很低,不容细菌和霉菌生存,所以不会被其破坏。另外由于不会与伤口粘连,本身无毒,常用来做卫生用品。

2.13 抗沾污和异味

聚丙烯是一种惰性化合物,且静电少和不 吸湿,所以它很难被沾污和吸收异味,丙纶织物 耐脏、易洗且不易有异味。

2.14 抗日晒性

早期的丙纶防老化问题没有解决,所以经 日晒和大气中热氧老化,强度易损失,但由于近 年技术的进步,在制造聚丙烯切片时加入了防 老化剂,其耐气候性已超过锦纶而接近涤纶。

2.15 染色问题

两纶无极性基因,染色性能差,不能染深色,只能染中色和浅色,染料只能用分散性染料和酸性染料。而羊毛和腈纶采用酸性染料,所以可和羊毛、腈纶混纺,用酸性染料染色。羊毛和腈纶着色较深,两纶着色较浅,只要混纺均匀、综合色可染成中色或浅色。另外还可用色母粒纺成有色两纶纤维。缺点是色谱少,不能印花。近年来国外已生产出改性两纶(如 ADPP 纤维)和加染色添加剂,均能使两纶成为可染色性纤维,其染色性能已达到涤纶和锦纶的水平。国内1.3 旦以上的两纶纤维染色已有满意的效果。染色问题的解决为两纶应用领域的开拓提供了广阔前景。

3 丙纶纤维的主要用途

利用丙纶纤维许多独特的优良性能,扬长避短,它的用途是相当广泛的,现将丙纶短纤维的常见用途列表于表 4。

	表 4					
	品种	用 途				
衣着类	纯纺或与棉、涤混纺纱线(10°~42°)	1、				
	与腈纶混纺	腈丙纱线代替纯腈纱(适宜染中色或浅色)				
	与羊毛混纺	毛丙绒线(适宜染中色或浅色)				
装饰类	粗旦有色丙纶纯纺或混纺或非织造布	1. 沙发布 2. 家具布 3. 汽车、船用装饰织物 4. 装饰织物(厚薄窗帘,帷幕等) 5. 贴墙布 6. 装饰用非织造布 7. 地毯(棉纱作经,丙纶纱作纬) 8. 毛巾底经				
工业类	机织物和非织造布	1. 人力车胎用帘子布 2. 运输用橡胶带基布 3. 工业用帆布 4. 鱼网、绳缆 5. 各种工程用土工布和人工草坪底布 6. 高性能滤布 7. 热轧或针刺无纺布(含包装用布)				

12

4 纺纱工艺特点

4.1 开清棉

两纶短纤纯纺或混纺均可在抓棉机混和,合理配置棉包排列,应尽量使抓棉机按混纺比抓取。经开清棉联合机和梳棉机的混和作用,及两道并条 8×8 根并合,能保证成纱中纤维混和均匀。两纶易开松,一般采用两棉箱、两个开清点,打手宜采用梳针打手或全梳针滚筒。

两纶比重轻、纤维蓬松、成卷定量宜轻、纯 纺时定量在 260 g/m 左右、如 50/50 混纺时以 300 g/m 左右为宜。成卷长度宜短、一般在 27 ~30 m。卷子应用塑料薄膜包扎。防粘措施可 参考涤棉混纺、但不能用压辊电热丝加热办法、 可用粗纱夹入花卷内。

丙纶纤维回潮低,纺纱过程中易产生静电,一方面应增加车间湿度,最好在清花时给湿,相对湿度保持在 75%~80%。如车间湿度不高,则在清花时适当喷 SN 抗静电剂,可以从根本上改善纤维的可纺性。

清棉主要作用是去掉一些纤维疵点,如粗的并丝束、丝块、倍长纤维等。因纤维轻,打击力可稍大,打手速度可适当快。另外气流作用大,纤维易随回收气流运动,为便于并丝、丝块的排除,回收气流宜小。

4.2 梳 棉

丙纶纤维易绕刺辊、锡林和轧辊,容易堵塞斜管。因此要求刺辊、锡林、道夫针刺要光洁,平整度好,无倒针、弯钩轧伤,使纤维易转移,减少绕花。最好选用针高低作用角大的新型针布。纤维通道光洁,以减少堵塞和断头。

- 4.2.1 生条定量适当减轻,纯丙纶定量 14~18 g/5 m,混纺为 15~20 g/5 m。
- 4.2.2 速度。应全机降速,锡林降速至200~280 r/min,最好在240 r/min 左右:刺辊速度在600~800 r/min,锡林刺辊线速比大于1.8;道夫转速在16~20 r/min;盖板线速在70 mm/min。
 - 4.2.3 隔距。小漏底入口宜小 6~8 mm。

除尘刀位置为使纤维疵点易落掉,可采用低刀大角度。刺辊-锡林隔距仍用 7"/1000;锡林-盖板隔距适当放大,减少纤维沉入针根,取 12"/1000~18"/1000 为宜,但过大易产生棉结;锡林-道夫隔距为使纤维易从锡林转移,仍用 5"/1000。

- **4.2.4** 加压。给棉罗拉加压宜重,可拉断部分倍长纤维。
- 4.2.5 操作。要加强巡回,防止粘卷、双卷和厚卷头喂人,发现盖板花异常应立即停车检查处理,需每轮班抄一次车。
- 4.2.6 车间湿度。丙纶干燥易生静电,车间湿度宜大,最好相对湿度保持在 75%左右。

4.3 并条

一般只需两道并条, 丙纶在牵伸过程中牵伸力较大, 因此罗拉隔距应适当放大, 重加压。 丙纶纤维易绕罗拉和皮辊, 所以皮辊最好用生 漆涂料。因斜管易堵塞, 适当缩短揩车周期, 使 通道保持光洁。

4.4 粗 妙

粗纱定量适当减轻,隔距需放大,加压应加重,捻度需减少,捻系数可选用英制 0.65 左右。因丙纶比重轻、蓬松,卷绕密度应适当调小,压掌可改为一绕,锭壳应抛光保持通道光洁。

4.5 细 妙

细纱机的罗拉隔距应适当放大,加压加重, 捻系数应根据不同支数和用途确定之,在不影响强力时可适当减少,以利锭速降低。20°~30° 机织用纯丙纶纱选英制捻系数 2.5~2.9.50/ 50 30°~42° 机织丙棉混纺纱选英制捻系数 3.2 ~3.5。

丙纶耐热性差,宜降低纱与钢丝圈的摩擦 发热,一可适当降低锭速,二应减小气圈张力, 可选用较轻的钢丝圈,另外宜采用圈形较大,通 道宽畅的钢丝圈。

4.6 络 筒

丙纶摩擦易生静电,影响筒子成形,机槽筒 应降速,一般在1600~2000 r/min,张力片可不 用,以降低纱的摩擦。