Number 11 in 2003 (Total No. 169)

Concrete

全国建筑科学核心期刊 China Building Science Core Periodical

聚丙烯纤维与钢纤维喷射混凝土弯曲韧性的对比

陈迅捷, 陈基成, 王 宏

(南京水利科学研究院,江苏 南京 210029)

[摘 要] 随着聚丙烯纤维和钢纤维掺量的增加,纤维混凝土弯曲韧性指标提高。纤维掺量为体积1.03%的聚丙烯纤维混凝土等效弯 拉强度仅相当于纤维掺量为体积 0.45%的钢纤维混凝土。改性聚丙烯纤维混凝土取代钢纤维混凝土应用于喷射混凝土支 护工程,尚需提高聚丙烯纤维弹性模量,并增加混凝土中聚丙烯纤维掺量。

[关键词] 聚丙烯纤维; 钢纤维; 喷射混凝土; 弯曲韧性

[中图分类号] TU528.572

[**文献标识码**] B

[文章编号] 1002-3550(2003)11-0066-02

1 前言

宜兴抽水蓄能电站地下厂房经设计采用喷射钢纤维混凝 土永久支护, 混凝土强度等级 C25, 弯曲韧度指数 nmin 大于 7.0, 7,30大于 18.0。

由于地下厂房钢纤维混凝土有碳化腐蚀的隐患,为提高地 下厂房支护混凝土的耐久性,采用改性聚丙烯纤维与钢纤维混 凝土的物理力学性能进行试验对比,希望在满足纤维混凝土强 度和弯曲韧性的基础上,改性聚丙烯纤维混凝土取代钢纤维混 凝土支护宜兴抽水蓄能电站地下厂房。

2 喷射混凝土大板试验原材料和混凝土配合比

2.1 试验原材料

- (1)水泥:海螺 P、O42.5R 水泥。3 天胶砂强度 40.0MPa, 28 天胶砂强度 65、9MPa。
- (2)硅粉:遵义铁合金厂回收硅粉。SiO。含量 90、72%。 比表面积 24.1m²/g。

- (3)砂、中粗山砂、细度模数 2.85。
- (4)碎石:灰岩碎石,最大粒径 10mm。
- (5)减水剂:上海麦斯特建材有限公司 RHEOBUILD1100 高效减水剂。
- (6)速凝剂:河南省巩义市特种建材厂 8604 型液态速凝 剂。1 天抗压强度比 135%, 28 天抗压强度比 70%。
- (7)纤维,浙江嘉兴七星钢纤维厂 ZH-06 凸痕形钢纤维, 纤维长度 32mm, 等效直径 0.7mm。

东华大学建材纺织品信息研究中心提供异形聚丙烯纤维, 纤维长度 19mm, 等效直径 0.5mm。为降低混凝土塑性开裂指 数,另掺加体积 0.03%的聚丙烯细纤维,纤维长度 15mm,等效 直径 0.06mm^[1]。

2.2 混凝土配合比

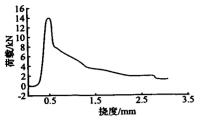
喷射大板试验混凝土配合比见表 1。纤维混凝土采用二 次搅拌工艺, 先将纤维和碎石在搅拌机内拌和 60 秒; 再加入水 泥、硅粉、砂、干拌60秒;最后加水和减水剂拌和120秒。混凝 土拌合物坍落度适宜控制范围为(80±10)mm。混凝土大板采

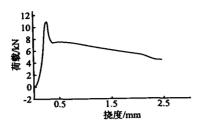
表 1 喷射大板试验混凝土配合比

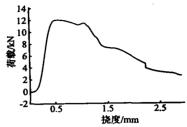
纤维品种	纤维掺量	每方混凝土原材料用量/(kg/m³)		
	体积 0、45%	水泥: 硅粉: 砂: 碎石: 钢纤维: 水: H1100: 8604 420: 21: 950: 690: 35: 200: 9.5L: 18		
钢纤维	体积 0.58%	水泥:硅粉:砂:碎石:钢纤维:水:H1100:8604 420:21:950:690:45:200:10.0L:18		
	体积 0.70%	水泥: 硅粉: 砂: 碎石: 钢纤维: 水: H1100: 8604 420: 21: 950: 690: 55: 200: 10、5L: 18		
	体积 0.58% (0.55+0.03)	水泥:硅粉:砂:碎石:纤维:水:H1100:8604 420:21:950:690:5、25:200:9、5L:18		
聚丙烯纤维 -	体积 0.80% (0.77+0.03)	水泥:硅粉:砂:碎石:纤维:水:H1100:8604 420:21:950:690:7.25:200:10,0L:18		
	体积1.03% (1.00+0.03)	水泥:硅粉:砂:碎石:纤维:水:H1100:8604 420:21:950:690:9.25:200:10、5L:18		

用湿喷施工成型,混凝土速凝剂由湿喷机喷射口掺加。

3 纤维品种和掺量对混凝土强度影响试验对比


不同掺量的钢纤维和聚丙烯纤维对混凝土 28 天抗压强度 和抗折强度的影响试验结果对比见表 2。

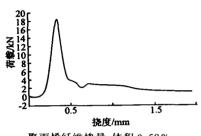

由试验结果可见,通过掺加聚丙烯纤维和钢纤维可提高混 凝土的抗压强度和抗折强度。聚丙烯纤维和钢纤维的长径比 基本相同, 当纤维体积掺量相同时(体积 0、58%), 强度增加幅 度相当。

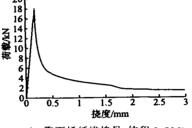

表 2 钢纤维和聚丙烯纤维对混凝土强度的影响试验结果对比

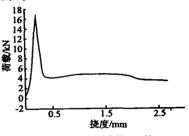
混凝土品种	纤维掺量 (体积/%)	28 天抗压强度 /MPa	28 天抗折强度 /MPa
基准混凝土	0	33.6/100	5.65/100
	0.45	36.9/110	5.81/103
钢纤维混凝土	0.58	36.5/109	5.99/106
	0.70	37.6/112	6.33/112
B = 18 41	0.58	37.9/113	5.96/106
聚丙烯纤 — 维混凝土 —	0.80	41.6/123	6.84/121
年16晚上 —	1.03	39.6/118	6.42/114

4 纤维品种和掺量对混凝土弯曲韧性的影响试验对比 混凝土弯曲韧性试验根据中国工程建设标准化协会标准 《钢纤维混凝土试验方法》(CECS13:89)进行^[2]。混凝土弯曲 韧性试验数据使用美国 Agilent 公司 E1413C 数据采集系统采 集。混凝土弯曲韧性试验荷载 - 挠度曲线见图 1 和图 2。






a、钢纤维掺量:体积 0.45%


b、钢纤维掺量;体积 0、58%

c. 钢纤维掺量:体积 0.70%

a、聚丙烯纤维掺量;体积 0.58%

b. 聚丙烯纤维掺量;体积 0.80%

c. 聚丙烯纤维掺量:体积 1.03%

图 2 聚丙烯纤维混凝土弯曲韧性试验荷载 - 挠度曲线

算结果见表 4。

根据 CECS13:89, 纤维混凝土初裂强度、弯曲韧度指数和 承载能力变化系数检测计算结果见表 3。

《载能力变化系数检测计算结果见表 3。 根据上海市工程建设规范 **(**切断型钢纤维混凝土应用技术

规程)(DG/TJ08-011-2002)[3],纤维混凝土弯曲韧度系数计

表 3 反映了纤维混凝土在不同开裂程度时的韧性指标, 表 4 反映了纤维混凝土的总体韧性指标。

表 3 混凝土弯曲韧度指数和初裂强度检测计算结果

en Du		弯曲韧	度指数			承载能力变化系数			初裂强度
组别 -	η_{m5}	η _{m10}	η _{m20}	η _{m30}	η _{m5}	η_{m10}	η _{m20}	7 _{m30}	f _{fc, cre} /MPa
钢-0.45	4.60	7.25	10.15	11.90	0.80	0.39	-0.04	-0.25	3.85
钢-0.58	4.49	8.51	15.34	18.49	0.75	0.67	0.51	0.20	3.18
钢 - 0.70	4.97	9.79	16.07	19.21	0.98	0.95	0.59	0.26	3.52
聚丙烯-0.58	2.74	3.67	5.04	5.90	-0.13	-0.41	-0.57	-0.66	4.73
聚丙烯-0.80	3.19	4.71	6.67	7.76	0.10	-0.18	-0.40	-0.53	4.78
聚丙烯-1.03	2.94	4.98	9.33	12.79	-0.03	-0.12	-0.12	-0.19	4.42

表 4 纤维混凝土弯曲韧度系数计算结果

组别	弯拉强度 /MPa	等效弯拉强度 /MPa	弯曲韧度系数 R _{e.3} /%
钢-0.45	4.25	1.50	36
钢 - 0.58	3.45	1.94	43
钢 - 0.70	3.87	2.66	69
聚丙烯-0.58	5.61	0.87	16
聚丙烯-0.80	5.32	1.27	24
聚丙烯-1.03	4.90	1.42	29

纤维混凝土试件开裂后的等效弯拉强度取决于纤维本体 抗拉强度和弹性模量、混凝土中纤维掺量及分散性、纤维与混 凝土基材界面之间粘结强度等因素。

由试验结果可见,随着聚丙烯纤维和钢纤维掺量的增加, 纤维混凝土弯曲韧性指标提高。钢纤维混凝土中钢纤维掺量 为体积 0.58%时,纤维混凝土弯曲韧度指数 η_{m10} 和 η_{m30} 已能满足设计指标要求。异形聚丙烯纤维掺量达体积 1.03%时,聚丙烯纤维混凝土等效弯拉强度仅与钢纤维掺量为 0.45%的纤维混凝土相当,弯曲韧度指数 η_{m10} 和 η_{m30} 尚不能满足设计指标要求。

纤维混凝土弯曲韧度指数 η_{ms} 、 η_{ml0} 为初裂挠度 3.0、5.5 倍时的韧度实测值与初裂韧度之比,此时纤维材料的弹性模量对纤维混凝土弯曲韧度指数影响较大。由于聚丙烯纤维的弹性模量仅为 0.5 GPa ~ 1.3 GPa $^{[4]}$,远低于钢纤维(210 GPa),聚丙烯纤维混凝土试件开裂后应力陡降较钢纤维混凝土明显,弯曲韧度指数 η_{ms} 、 η_{ml0} 数值较低,混凝土中聚丙烯纤维混凝土弯曲韧度指数 η_{ms} 、 η_{ml0} ,需相应提高聚丙烯纤维弹性模量。

由试验结果可见,随着混凝土中聚丙烯纤维掺量的增加, 聚丙烯纤维混凝土弯曲韧度指数 η_{m20}、η_{m30}提高。试验中,聚丙 烯纤维混凝土试件断裂面为纤维拔出破坏,表现为聚丙烯纤维

T-T----

与混凝土基材界面之间粘结强度不够,其主要原因也是由于聚丙烯纤维弹性模量过低,在受力时纤维发生较大徐变,纤维轴向伸长,导致纤维与混凝土基材界面之间出现较大的侧向拉应力,纤维突然失去粘结力而被拔出 $^{[5]}$ 。为提高聚丙烯纤维混凝土弯曲韧度指数 η_{m20} 、 η_{m30} ,需增加混凝土中聚丙烯纤维掺量,并提高聚丙烯纤维弹性模量。

5 结语

- (1)通过掺加聚丙烯纤维和钢纤维可提高混凝土的抗压强 度和抗折强度,当纤维体积掺量相同时,强度增加幅度相当。
- (2)随着聚丙烯纤维和钢纤维掺量的增加,纤维混凝土弯曲韧性指标提高。异形聚丙烯纤维掺量达体积 1.03%时,聚丙烯纤维混凝土等效弯拉强度仅与钢纤维掺量为体积 0.45%的纤维混凝土相当。
 - (3)为提高纤维混凝土弯曲韧度指数,需提高聚丙烯纤维

弹性模量,并增加混凝土中聚丙烯纤维掺量。

[参考文献]

- [1]卢安琪,等.聚丙烯纤维混凝土试验研究[J],水利水运工程学报, 2002,(4):14-19,
- [2]CECS13:89. 钢纤维混凝土试验方法[S].
- [3]DG/TJ08-011-2002、切断型钢纤维混凝土应用技术规程[S].
- [4] 袁勇, 邵晓芸. 合成纤维增强混凝土的发展前景[J]. 混凝土, 2000, (12) · 3 7.
- [5]程庆国,等,钢纤维混凝土理论及应用[M],中国铁道出版社,1999,

[作者简介] 陈迅捷(1963--), 男, 高级工程师。

[单位地址] 南京市虎踞关 34 号南京水利科学研究院材结所 (210024)

[联系电话] 025-5829613;13002588217

随着入民生活水平以及科学技术的提高,对各项建筑中防水、防裂的要求越来越高。宜兴市东山新型 材料有限公司开发生产一系列防裂纤维解决混凝土脆性易开裂问题。

- 一、用途: 1、道路混凝土: 高速公路路面、机场跑道、停机坪、桥梁铺装层、停车场等。2、工业及民用建筑混凝土、砂浆刚性抗裂自防水; 离层建筑的地下室地板、侧墙; 货舱、厂房地板; 港口、码头; 水池、化污池、水渠等; 屋面、外墙抹灰、金属板之混凝土罩面层。3、水泥制品: 保温、隔热墙板、泡沫混凝土、水泥预制板、管等。4、喷射混凝土、砂浆: 隧道衬砌等薄壁结构; 基坑支护、加固等。
- 二、功能: 1、抗裂:有效提高混凝土、砂浆对塑性收缩、离析、水化热温度应力等因素导致的非结构性裂纹的抗裂能力。可作为抗裂钢丝网之替代或增强材料。0.05%体积掺量,抗裂能力提高即达70%以上。2、抗渗:有效提高混凝土、砂浆抗渗防潮能力,可作为一种有效的刚性本体自防水添加材料。0.05%体积掺量,抗裂能力提高即达60%以上。3、抗冲击:有效提高混凝土、砂浆抗冲击、抗震、及抗龟裂能力。0.05%体积掺量,锤击测试,初裂及粉碎锤击次数成倍提高;砂浆薄板抗冲击强度测试,提高25%。4、抗冻;大大提高抗冻能力,有效提高混凝土的耐久性。0.05%体积掺量,动态弹模残余测试,较之不加纤维提高达数倍。5、抗磨:明显提高混凝土、砂浆面层的耐磨能力,明显减少起尘、磷状、片状剥落等破损现象。6、增强延性:可大大据高混凝土的韧性,提高抗裂变形能力,特别对改善高强混凝土的脆性有重要意义。三、特点:分散性好,握裹力强;乱向分布,自动补强;施工简易,无毒安全;无磁防锈,防腐耐碱;完全物理性加筋,达到抗裂补强作用。

四、规格: 1、HT 防裂纤维是一种聚酯纤维。特点;熔点高、强度好、适用于沥青路面防裂。2、LT 防裂纤维是一种改性 PP 纤维。特别适用于砂浆、大体积混凝土。3、BT 防裂纤维是一种无碱玻璃纤维。特点:价廉物美

以上各种纤维其长短、粗细均可按用户要求生产,常规: 19mm、15mm、12mm、10mm、5mm。

五、价格(经销商价格): HT: 3万元/t LT: 2.5万元/t BT: 1.5万元/t

六、本厂产品经国家建筑材料测试中心检验, 诚征全国各地代理商, 欢迎各地有识之士共同开发新型建材。

宜兴市东山新型材料有限公司

电 话: 0510-7982953、7995385、7789953 传 真: 0510-7982953、7995385 E-mail: web@188x.com

http://www.188x.com 开户行: 宜兴市工行东山办 帐 号: 1103028909000039117